
Beamline Micro-P
Enhancements for fast magnet supply

Mon, Jan 14, 2002

This note is the result of communications with Bob Florian and Arlene Lennox about changes 
to be made to the Beamline micro-p software to optimize performance in switching between 
NTF beam cycles and HEP beam cycles. The purpose for this is to share beam cycles in the 
most efficient manner, taking advantage of recent hardware optimizations in the 58 degree 
bending magnet power supply that were made to reduce the time of ramping the magnet 
that directs Linac beam into the NTF beam line.

The reading of the magnet current is actually filtered from the real signal, in order to take 
away some noise in that current signal. Without the filter, the noise is bad enough that it can 
make the reading of the current appear to be outside the tolerance limits. The magnet current 
does not really exhibit this 720 Hz noise, but the magnet current transducer output signal that 
arrives at the A/D does. But the RC filtering introduces a delay, so that the Beamline micro-p 
is slightly behind in seeing the real current value. And that means it may not be aware that 
the current has really arrived at its intended nominal level, even though it really has.

Bob Florian plotted some of the readings of interest on the usual kind of 15 Hz plot available 
in the control system. While this may not show the detail that Milorad Popovic captured via 
scope traces, it does show the data on which the Beamline micro-p makes its decisions. He 
tested the case where a single HEP beam pulse was scheduled during NTF operation. Indeed, 
when the magnet switched off, the very next cycle exhibited HEP beam. But when the 
magnet switched back on, the reading of its current was a few percent shy of the nominal 
value; of course, there was no NTF beam on that cycle. On the following cycle, the reading 
showed that the magnet was up to nominal, but there was still no NTF beam. Altogether, 
there were 3 NTF beam pulses lost to grant one HEP beam cycle; there were 2 cycles of lost 
opportunities for NTF beam.

Milorad's data apparently showed that the magnet current was really up to nominal within 
one 15 Hz cycle. But our reading may be lagging so that we don't know it yet. If we knew the 
truth, and we read it soon enough, that should eliminate one lost cycle.

When the MPENBL (micro-p enable) routine, which is invoked as the last significant piece of 
logic during 15 Hz processing, notices that the ramp enable status just went high, compared 
with being low on the previous cycle, it checks the number of delay pulses specified as a 
minimum for waiting for the magnet to ramp up. If that value is zero, it thinks that someone 
forgot to set it, and it uses 2 by default; otherwise, it takes the value found there, which could 
be 1 as a minimum. (Recall the that original implementation of the power supply had the 
ramp requiring maybe 5 or more cycles; furthermore, it exhibited overshoot and some 
ringing.) Then it initializes the ON/OFF sequencing logic to the OFF state, using that counter 
value. Although the rest of the MPENBL logic might result in clearing the micro-p enable 
control line, nothing in that routine sets it; rather, the time it gets set is about midway 
through the 15 Hz cycle, when it knows that the next pulse is scheduled to be an ON pulse. 
(Recall the notion of duty cycle control via a sequence of ON pulses followed by a sequence of 
OFF pulses.) It knows about this time of midway through the cycle, because it actually 
arranges to get 60 Hz interrupts within each 15 Hz cycle by operating a timer.

In order to schedule an ON cycle immediately following a cycle on which the ramp enable 
status just went high, the logic must be changed to accept a value of zero for the number of 



delay pulses for awaiting the magnets to ramp. (The current logic thinks that zero is an error, 
so it uses a 2-cycle delay in that case.) If this delay is zero, it must switch to the ON pulse state 
and set the count for the scheduled number of ON pulses in a sequence—assuming that this 
count is nonzero, of course.

It is useful to know the exact timing of what the micro-p does during 15 Hz processing. The 
timing of its interrupt, derived from the accelerator timing system, is set to 1251 
microseconds after the reset clock event time. This should place it well before beam time, 
which occurs about 2000 microseconds after event time. (The reason it operates ahead of 
beam time is so it can capture the "zero data" pedestals for the QP, X1, and X2 signals.) Then it 
reads the pressure, temperature, and digital input mux. It then waits for 800 microseconds 
(according to a source code comment) in order to allow the beam pulse to occur and 
complete. After this delay, it reads the 16-channel A/D (including QP), the 8-channel 
differential A/D (including X1 and X2), and the "safety system status," which includes the 
interlock chassis status signals. It then computes the ion chamber deltas, making use of the 
zero data values captured earlier. Next it checks for the interlock conditions, assuming that it 
has treatment enable status. These conditions detect missing beam pulses; and if this is the 
last ON pulse in the sequence of ON pulses, it also checks dose thresholds, ratios and voltages. 
There are LEDs associated with each of these potential bad conditions, and if any of those 
LEDs is set, it pulls down a control line to stop treatment. The next step compares the 
readings of bend magnet currents against the nominal values and updates the currents 
nominal control line accordingly. Finally, the MPENBL routine is invoked that is described 
above. That ends 15 Hz processing; the time required for all this is 2.7 ms, from diagnostics 
that are included in the NTF data pool, with the MPENBL routine running near the end of this 
time. The time from the start of the 15 Hz interrupt code to the time of having just digitized 
the 16-channel A/D is 2.0 ms.

The recent improvements in the response of the magnet power supply have made it possible 
to bring the magnet currents up to nominal within one 66 ms cycle. At this time, it appears 
that this ramp is accomplished in 57 ms, beginning immediately after the beam pulse of the 
previous cycle. (This can be stated as 59 ms past the Booster reset clock event, since Linac 
beam pulses occur at 2 ms after such a clock event.) But in order for the micro-p to verify that 
the current is actually at nominal and thus set the currents nominal control line, it must have 
a chance to read the currents signal very late in the cycle. Its 15 Hz activity now starts at 1.251 
ms after event time, so it can collect “just-in-time” zero data. But this is too late for checking 
the reading of the magnet currents, because the interlock box must ok beam within 50 
microseconds following event time, or no beam can be accelerated. This means we need to 
check the magnet currents reading a bit before the event time, as it would not be possible to 
acquire the data and check it within 50 microseconds.

It turns out that this may be possible to arrange. The micro-p actually schedules 60 Hz 
interrupt activity for itself within the 15 Hz cycle. One reason for doing this was to capture 
zero data one 60 Hz period before the beam pulse--in order to remove the effects of 60 Hz 
ripple noise on those signals. But we now read zero data just before the beam pulse, as 
described above. When the third 60 Hz interrupt is scheduled, during the second 60 Hz 
interrupt, we can change the timer delay value so it occurs later, say at 60 ms or so past event 
time. That interrupt activity can be changed to digitize the magnet current signals, check 
them, and thereby establish the correct level for the currents nominal control line. By doing 
this, it should be possible to accelerate Linac beam for NTF on the very next cycle following 
an HEP beam cycle.

Beamline Micro Logic p. 2



Detailed changes in Beamline micro-p software
Module MPEnbl.a

In the MPENBL routine, if CST+0, a byte whose value specifies the delay to allow the 
magnet to ramp up before permitting beam, is less than 40, interpret it as before: assume that 
it represents a number of cycles delay before permitting beam, with at least one cycle 
guaranteed. If it has a value in the range 40–64, assume it specifies the number of 
milliseconds delay to wait in the current cycle before checking to see whether the magnet is 
up and within tolerance. Operationally, it means that when it is desired to operate with 
minimal delay, the time to examine the bend field current must be specified. And that time 
should not be more than 64 ms, as measured from the 15 Hz interrupt time that comes 1251 
microsec after reset event time, in order to allow for time to finish the job before the start of 
the next cycle. (15 Hz timing must allow for variations in power line frequency, which is why 
65 ms is not permitted.) We could write the code so that a value of 0 is interpreted as 64 ms, 
say. This may be more user-friendly.

Module Acc.a
In the SIXTY (60 Hz interrupt) routine, on the occasion of the second 60 Hz interrupt, 

check the value of the CST+0 byte. If it is at least 40, but not more than 64, compute the 
appropriate delay in 800 KHz units for the timer to produce the third 60 Hz interrupt. This 
arithmetic should be (N*800 - 26666), where N is the value of the CST+0 byte. This 
computation would yield results in the range 5334-24534. (If the value of the CST+0 byte is 
outside the expected range, do the same thing as now, and set 15000 into the timer register, 
resulting in a third interrupt time of one 60 Hz cycle before beam time.)

For the third 60 Hz interrupt, which will likely be later than that as a result of the new 
logic, call RDAD and COMP to read the 16-channel A/D and perform the checks of the two 
magnet readings against their nominal and tolerance values, setting the bend currents 
nominal control line appriopriately. We can remove the code that establishes zero-data 
values for X1 and X2 from this code, since this logic is also performed just before beam time. 

The CLOCK routine can be called to get the time when the third “60 Hz” interrupt 
routine completes. Such time values are in units of 320 us. There are 8 bytes of such times that 
can be observed in the readings of node061c channels 013e, 013f, 0140, 0141, where each 
channel reading includes a pair of byte-wide time values. For this new time that marks the 
completion of the third 60 Hz interrupt, use TIMES+7, the last of the 8 bytes. This will leave 
one byte unused, TIMES+6. The table of TIMES bytes are as follows:

TIMES+ Usual Time, ms Meaning
0 D0 66.6 Length of previous 15 Hz cycle.
1 06 1.9 In 15 Hz interrupt, just read 16-channel A/D.
2 08 2.6 In 15 Hz interrupt, all data ready in data pool.
3 08 2.6 End of 15 Hz interrupt. All data in shared memory.
4 68 33.3 Start of second 60 Hz interrupt.
5 7D-C8 40.0-64.0 Start of third 60 Hz interrupt. (depends on CST+0)
6 -- spare
7 7E-C9 40.3-64.3 End of third 60 Hz interrupt. 

To relate the above times to a delay after the reset event, add 1.25 ms. Also, the resolution of 
these measured one-byte time values is 0.32 ms, so the accuracy of the values here 
represented to 0.1 ms is somewhat optimistic.

Beamline Micro Logic p. 3


